Energy and the Built Environment CRP 470.004 /570.004

Christian E. Casillas

Lecture 13

Global energy trends

Document submitted to UN

U.S. EMISSIONS UNDER 2020 AND 2025 TARGETS

EPA Clean Power Plan Targets

NM Emissions (Mt CO2)

Source: www.nmenv.state.nm.us

NM CO2 Emissions 2012

- Residential Sector
- Commercial Sector
\square Industrial Sector
■ Transportation Sector
Electric Power Sector

NM Emissions (Mt CO2)

—Historic
—Projected
-Reduction path

Total emissions reduced to 34% below 2005 emissions.
Project emissions growth equal to population growth, of 0.64% per year

5 near-term wedges (18 yrs) of 45 Mt CO2

5 Mt
 CO2/yr

18 yrs

How to calculate a solar wedge

- Current grid emissions: 0.66 kg CO2/kWh
- Want to reach 5Mt CO2/yr by 2030
- Total kWh reduction by 2030:
$\frac{5 \times 10^{6} t \mathrm{CO}_{2} / \mathrm{yr}}{0.00066 t \mathrm{CO}_{2} / \mathrm{kWh}} \times \frac{\mathrm{GWh}}{1 \times 10^{6} \mathrm{kWh}}=7576 \mathrm{GWh} / \mathrm{yr}=21 \mathrm{GWh} /$ day
- Equivalent PV installed capacity in 2030 (ave CF of 0.23) $\frac{21 G W h}{24 h r * 0.22}=3.8 G W$

Example: solar PV

5 near-term wedges (18 yrs) of 45 Mt CO2 eq (. $5 \times 18 \mathrm{yrs} \times 5 \mathrm{Mt} / \mathrm{yr}$)

5 Mt CO2/yr

18 yrs

Total PV installations:
3.8 GW installed in 18 yrs (210 MW/yr)

Rate of installation

- 3.8 GW of PV installations in 18 years
- $210 \mathrm{MW} /$ year
- If ave household installation is 2 kW , then this would be $210,000 \mathrm{~kW} / 2 \mathrm{~kW}=105,000$ households/year.
- There were only 905,000 housing units in NM in 2013!!
- Or twenty-one 10 MW solar PV plants per year...
- Pretty fast!

Cost

- $210 \mathrm{MW} /$ year
- $4 \$ / W$ ave installed cost (2013)
- 210 e6 W/yr x 4 \$/W = 840 million $\$ / \mathrm{yr}$
- Ave annualized lifetime cost per "system" per year (assuming 20yr payback, 7\% discount)
- 840e6 \$/yrx (.07/(1-1.07^-20)) = 79 million $\$ / \mathrm{yr}$
- 79 million $\$ / \mathrm{yr}$ for 210 MW installations per year

Mitigation cost

- 79 million \$/yr for 210 MW installations per year
- Annual emissions reductions from $210 \mathrm{MW} / \mathrm{yr}$ - 0.278 MtCO2/yr
- $79 \mathrm{M} \$ / \mathrm{yr} / 0.278 \mathrm{MtCO} / \mathrm{yr}=284$ \$/CO2

What is the comparative advantage?

- Who saves money from the investment?
- Who does this cost?
- Is there job creation?
- Are there other life-cycle environmental implications (not just CO2 - what about water, other pollutants)

Mitigation sources (McKinsey)

U.S. MID-RANGE ABATEMENT CURVE - 2030

Cost
Real 2005 dollars per ton $\mathrm{CO}_{2} \mathrm{e}$

buildings LED lighting

Commercia
buildings -
buildings -

Onshore wind Low penetration

What are policies that can encourage this...

- PACE (only in SF county)
- Net metering (less than 10 kW)
- Additional paper work up to 80 MW
- NM State tax rebate: up to $\$ 9,000$ or 10% of installation cost
- Federal tax credit: 30\%
- RPS

Emissions from reforestation?

- 27% of NM is forestland (5.3 million ha)
- Annual estimated Mt CO2 absorption
- 16.7 Mt CO2/yr
- 3 tCO2/ha yr
- How much land would need to become forested to reach an additional 5Mt CO2/yr by 2030?
- 16,042 sq km of land reforested
- An additional 5\% of land area in NM

Emissions reference: http://www.nmenv.state.nm.us/cc/documents/CCAGFinalReport-AppendixD-EmissionsInventory.pdf

How do we impact market transformation?

- Does fire suppression lead to long term, increased carbon sequestration?
- Can we encourage reforestation?
- Can we utilize wood overgrowth for power generation/heating?
- What are co-benefits to greater forest management/protection/hands-off?

Emissions from chickens?

- 1.4 Mt of CO2 emissions associated with 1 Mt of chicken production (Pelletier, 2008)
- For $5 \mathrm{Mt} / \mathrm{yr}$ reduction, need to replace 3.6 Mt of chicken consumption in 18yrs.
- Ave US consumption/yr: $45 \mathrm{~kg} /$ person
- NM pop: 2.068 million people
- tons of chicken consumption in NM: 0.1 Mt

What are the co-benefits?

- What are other benefits from reducing reliance on factory-farmed chicken?
- Raising chickens at home?

Key Points

1. Carbon mitigation analysis tools should emphasize strengthening vulnerable communities.
2. Policy makers need continued exposure to tools of analysis that simplify connections between social, economic, and environmental impacts of carbon mitigation projects.

Marginal abatement cost (MAC) curve

Inclusion of welfare metrics

- Poverty Headcount Ratio
- The fraction of the population that is living below \$ 1.25 per day
- Income Gini coefficient (ranges from 0 to 1)
- 0 indicates perfect income equality
- 1 indicates total inequality

Carbon abatement with welfare metrics

Fig. 1. Proposed visual to simultaneously communicate GHG mitigation potential and development benefits of technology options

A visual Development Impact Assessment (DIA) tool was applied to support an analysis of mitigation options for Kenya's National Climate Change Action Plan (NCCAP)

Figure 3. Overview of mitigation potential, costs, and adaptation and sustainable development impacts of low-carbon development options in the agriculture sector in Kenya

