Energy and the Built Environment CRP 470.004 /570.004

Christian E. Casillas

Lecture 2

US energy trends

Outline

- Discussion of readings
- Overview of US energy use
- Sample calculations
- Unit conversions, significant digits

History of energy consumption in the United States, 1775-2009 quadrillion Bltu

Sounde: U.S. Energy Intormation Administration = Anmual Enerpy Review 2000

Consumption versus Production

Domestic energy supply met 84\% demand in 2013

U.S. primary energy overview

quadrillion Btu

Source: U.S. Energy Information Administration, Monthly Energy Review, Table 1.1 (April 2013), preliminary 2012 data

70\% of total imported energy was crude oil (EIA, 2013)

Figure 2.2 Residential Sector Energy Consumption (Quadrillion Btu)

By Major Source, 1949-2013

Example: conversions

- Many of the EIA's plots are in units of quadrillion BTUs, also known as a Quad.
- Convert 1 quadrillion BTU's to 1 GWh
- Hint:
- 1 quadrillion is 1 thousand million million (1e15)
-1 BTU = 1055 J
$-3.6 \mathrm{e} 6 \mathrm{~J}=1 \mathrm{kWh}$

Example: conversions

- Convert 1 quadrillion BTU's to 1 GWh
- Hint:
- 1 quadrillion is 1 e 15
-1 BTU = 1055 J
$-3.6 \mathrm{e} 6 \mathrm{~J}=1 \mathrm{kWh}$ (exact)
$\frac{1 e 15 B T U}{1} \times \frac{1055 J}{1 B T U} \times \frac{1 k W h}{3.6 e 6 J} \times \frac{1 T W h}{1 e 9 k W h}=293.1 T W h$

The US's energy challenge

- 25% of primary energy consumed in the US in 2013 was imported
- 70\% of these energy imports were crude oil.
- 71\% of crude oil is used in transportation sector
- 25% is used in industry
- This is a huge energy security (and climate) challenge!
- US electricity (39 \% of all energy use) is primarily from coal.
- This is a huge climate challenge!

Where does our oil come from?

Where does our oil come from?

About 50\% of our demand is supplied domestically
Top 10 Sources of Oil Imports to the US, 2013

Accounting for 84\% of imported oil. Data source: EIA, Dec, 2014

Views of energy security

Became "spill, baby, spill" after Deepwater Horizon in 2010

The proposed Keystone XL Pipeline (Phase IV, green), duplicates the Phase I pipeline between Hardisty and Steele City with a
 shorter route and a larger-diameter pipe.

Keystone Pipeline calculation

- The phase 1 can deliver up to 590,000 bbl of oil per day to mid-western refineries.
- What is the energy equivalent of this, in TWh?
- Annual energy consumption of oil in 2013 was 35 Quads.
- What was the daily average consumption?
- What percent of daily use of oil is delivered in the Keystone pipeline to the midwest?

Keystone Pipeline calculation

1 TWh/day / 28 TWh/day = 1/28
$=0.036$ or 3.6%

Sankey Diagram of US energy use

Estimated U.S. Energy Use in 2013: ~97.4 Quads

National Laboratory

Source: LLNL 2014. Data is based on DOE/EIA-0035(2014-03), March, 2014. If this information or a reproduction of it is used, credit must be given to the Lawrence Livermore National Laboratory and the Department of Energy, under whose auspices the work was performed. Distributed electricity represents only retail electricity sales and does not include self-generation. EIA reports consumption of renewable resources (i.e., hydro, wind, geothermal and solar) for electricity in BTU-equivalent values by assuming a typical fossil fuel plant "heat rate." The efficiency of electricity production is calculated as the total retail electricity delivered divided by the primary energy input into electricity generation. End use efficiency is estimated as 65% for the residential and commercial sectors 80%

Primary energy consumption by source and sector, 2013 quadrillion Btu

How Energy Is Used in Homes (2009)*

*2009 is the most recent year for which data are available.
Source: U.S. Energy Information Administration, Residential
Energy Consumption Survey (RECS) 2009.

28% of energy use for transportation in the US

Fuel used for U.S. transportation, $2013{ }^{1}$

' Based on energy content
Motor gasoline and aviation gas; excludes ethanol Excludes biodiesel
'Electricity, Iquid petroleum gas, Mubricants, residual fuel oil and other fues
Note. Due to rounding. data may not sum to exactly 100%
Source: U.S. Energy Information Administration, Monthly Energy Review June 2014, tables 2.5 and 3.8c, preliminary data for 2013

Net electricity generation in US (billion kWh)

US net electricity generation, 2013

Net electricity generation in US (billion kWh)

Source: EIA, 2014

Electrical Production by Renewables in the US in 2012

								Summer Power Source					Plants	Capacity (GW)	Capacity Factor	Annual Energy (billion kWh)	\% of annual production
Hydro	4023	78.7	0.40	276.24	6.75												
Wind	947	59	0.272	140.82	3.44												
Wood	351	7.5	0.575	37.8	0.92												
Biomass	1766	4.8	0.471	19.82	0.48												
GeoThermal	197	2.6	0.683	15.56	0.38												
Solar	553	3.2	0.154	4.33	0.11												
Total	7837	155.8	0.362	494.57	12.08												

Supplemental

Examples

1. A light bulb has a rating of 50 W . If the light is turned on for 3 hours, how much energy was changed from electricity into_____ and \qquad
2. How many hours will it take for a 100 W light bulb to consume 1 kWh of electricity?
3. A solar panel has a rating of 50 W under direct sunlight. If it receives direct sunlight for 3 hours, how much electricity will it generate? How many hours would this be able to power 4 LED light bulbs, of 3W each?

Examples

1. A light bulb has a rating of 50 W . If the light is turned on for 3 hours, how much energy was changed from electricity into power and heat?

- $3 \mathrm{hrs} \times 50 \mathrm{w}=350 \mathrm{~Wh}=0.350 \mathrm{kWh}=0.35 \times 10^{\wedge} 1 \mathrm{kWh}$

2. How many hours will it take for a 100 W light bulb to consume 1 kWh of electricity?

- Time $=$ energy $/$ power $=1 \mathrm{kWh} / 0.1 \mathrm{~kW}=10 \mathrm{hrs}$

3. A solar panel has a rating of 50 W under direct sunlight. If it receives direct sunlight for 3 hours, how much electricity will it generate? How many hours would this be able to power 4 LED light bulbs, of 3 W each?

- $50 \mathrm{~W} \times 3 \mathrm{hrs}=150 \mathrm{~Wh}$
- $150 \mathrm{~Wh} / 12 \mathrm{~W}=12.5 \mathrm{~h}=13 \mathrm{~h}$

Example

- How many Joules are in a kWh of energy?
- Hint: $1 \mathrm{kWh}=1000 \mathrm{~Wh}$, and $1 \mathrm{~W}=1 \mathrm{~J} / \mathrm{s}$

Example

- How many Joules are in a kWh of energy?
- Hint: $1 \mathrm{kWh}=1000 \mathrm{~Wh}$, and $1 \mathrm{~W}=1 \mathrm{~J} / \mathrm{s}$
$-1 \mathrm{kWh}=1000 \mathrm{~Wh}=1000 \mathrm{~J} / \mathrm{s} \times \mathrm{h}$
$-1000 \mathrm{~J} / \mathrm{s} \times 1 \mathrm{~h} \times 60 \mathrm{~min} / 1 \mathrm{~h} \times 60 \mathrm{sec} / 1 \mathrm{~min}$
$-3600000 \mathrm{~J}=3.6 \times 10^{\wedge} 6 \mathrm{~J}$

New Mexico Energy Consumption Estimates, 2012

NM Energy consumption by end-use, 2012

Residential
Commercial
Industrial
Transportation

