Energy and the Built Environment CRP 470.004 /570.004

Christian E. Casillas

Lecture 9

Transportation

Introductory Activity

- Introduce 3 modifications (in the form of technology, policies, transformation of the built environment) that could reduce energy demand in the transportation sector in ABQ

Sankey Diagram of US energy use

Estimated U.S. Energy Use in 2013: ~97.4 Quads

National Laboratory

Source: LLNL 2014. Data is based on DOE/EIA-0035(2014-03), March, 2014. If this information or a reproduction of it is used, credit must be given to the Lawrence Livermore National Laboratory and the Department of Energy, under whose auspices the work was performed. Distributed electricity represents only retail electricity sales and does not include self-generation. EIA reports consumption of renewable resources (i.e., hydro, wind, geothermal and solar) for electricity in BTU-equivalent values by assuming a typical fossil fuel plant "heat rate." The efficiency of electricity production is calculated as the total retail electricity delivered divided by the primary energy input into electricity generation. End use efficiency is estimated as 65% for the residential and commercial sectors 80%

Transportation energy use by type

- U.S. transportation energy use accounts for 28% of total U.S. energy use.
- Cars and light trucks account for 59% of U.S. transportation energy use.

Fuel used for U.S. transportation, $2013{ }^{1}$

'Based on energy content
Motor gasoline and aviation gas; excludes ethanol
Excludes biodiesel
${ }^{4}$ Electricity, Iquid petroleum gas, Mbricants, residual fuel oil, and other fuels
Note. Due to rounding. data may not sum to exactly 100%
Source: U.S. Energy Information Administration, Manthly Energy Review June 2014, tables 2.5 and $3.8 c$, preliminary data for 2013

US Emissions (2011)

Share of U.S. GHG Emissions by End-Use Sector*

* Nate: Tads maynat add to 100% due to munding.

Share of U.S. Transportation End-Use Sector GHG Emis sions by Source*
*Nate: Tatds maynat addto 100% dueto munding.

Global transportation GHG emissions

| East Asia | North America | Sub Saharan Africa | |
| :--- | :--- | :--- | :--- | :--- |
| Economies in Transition | South-East Asia and Pacific | Western Europe | |
| Latin America and Caribbean | Pacific OECD | World | |
| Middle East and North Africa | South Asia | | |

US Cars and light trucks

- There are 232,137 total light vehicles (cars and light trucks) in the US.
- The average age of a U.S. car is 11.4 years;
- Ave share of house expenditures on transport-17.5\%
- The average fuel economy for the U.S. car fleet is 24.5 mpg (18.4 for light trucks)
- Cars comprise 50% of new light vehicle sales.
- Ave person/vehicle 1.6 (car), 1.8 (trucks)
- U.S. car registrations account for 16% of total world car registrations.
- U.S. truck and bus registrations account for 38% of total world truck and bus registrations.

- The average U.S. household vehicle travels 11,300 miles per year (2009 NHTS).

Useful measures

- VMT - vehicle miles travelled
- MPG - tells us vehicle efficiency
$-1 \mathrm{MPG}=0.4 \mathrm{~km} / \mathrm{l}$
- BTU per passenger mile tells us efficiency in moving people (what we want!)
-1 kWh per $\mathrm{p}-\mathrm{km}=5459.68$ BTU per $\mathrm{p}-\mathrm{mi}$
- kWh per 100 p-km = 54.59 BTU per $100 \mathrm{p}-\mathrm{mi}$

Emissions Example

CO_{2} Emissions from a gallon of gasoline: 8,887 grams CO2/ gallon ${ }^{1}$
CO_{2} Emissions from a gallon of diesel:
10,180 grams $\mathrm{CO}^{2} /$ gallon 2
What would be the annual emissions (tons CO 2) for an American driver with a car that gets 21.6 mpg , with annual VMT of 11,400 ?
CO_{2} emissions per mile $=\frac{\mathrm{CO}_{2} \text { per gallon }}{\mathrm{MPG}}=\frac{8,887}{21.6}=411 \mathrm{grams}$
Annual CO_{2} emissions $=\frac{\mathrm{CO}_{2} \text { per gallon }}{\mathrm{MPG}} \times$ miles $=\frac{8,887}{21.6} \times 11,400=4.7$ metric tons

Source: http://www.rita.dot.gov/bts/sites/rita.dot.gov.bts/files/publications/national_transportation_statistics/html/table_04_23.html

Figure 5

U.S. miles per gallon

Fuel economy of U.S. cars and light trucks, 1975-2005.

Sources: U.S. Environmental Protection Agency, National Highway Traffic Safety Administration

Figure 7

Vehicle weight and acceleration, 1975-2007

Vehicle weight initially decreased to help meet the new standards, but has increased ever since.

Source: Environmental Protection Agency, 2007

Figure 2.4. Energy Intensity of Commuter Rail Systems, 2012

Source:
U.S. Department of Transportation, National Transit Database, May 2014. (Additional resources: www.ntdprogram.gov)

Urban densities vs public transport

Source: Bertaud \& Richardson

Figure 3.1. Vehicles per Thousand People: U.S. (Over Time) Compared to Other Countries (in 2002 and 2012)

Gasoline prices tend to have little effect on demand for car travel

Source: U.S. Energy Information Administration, based on Federal Reserve Bank of St. Louis
Hote: VMT is vehicle miles traveled. Per capita figures reflect U.S. population age 16 and over. Vehicle miles traveled figures are 12 -month rolling averages.
US gasoline demand is fairly inelastic (demand doesn't change much in response to price). Meta-analysis study by Espey (1998) found short run (1 yr) elasticity of $-.26,10 \%$ price increase reduces demand by 2.6%.

Figure 10.2. Gasoline Prices for Selected Countries, 1990 and 2013

Source:
Table 10.1 and International Energy Agency, Energy Prices \& Taxes, Fourth Quarter, 2013, Paris, France, 2014. (Additional resources: www.iea.org)

Figure 8.4 | Total passenger distance travelled by mode and region in 2000 and 2010 (IEA, 2012c)

Car Registrations for Selected Countries, 1960-2012

(thousands)
$\left.\begin{array}{lrrrrrrrrrrr}\hline & & & & & & & & & & & \\ \text { Average } \\ \text { annual } \\ \text { percentage } \\ \text { change }\end{array}\right\}$

Source:
Ward's Communications, Ward's World Motor Vehicle Data, 2013 Edition, Southfield, MI, 2013, pp. 308-311 and annual. (Additional resources: www.wardsauto.com)

Source: IPCC, AR5 - Transport, 2014

Modes to decrease fuel consumption

Type	Examples
Fuel Switching	- Using electric or hybrid automobiles, provided that the energy is generated from lower-carbon or non-fossil fuels. - Using renewable fuels such as low-carbon biofuels.
Improving Fuel Efficiency with Advanced Design, Materials, and Technologies	-Developing advanced vehicle technologies such as hybrid vehicles and electric vehicles -Reducing the weight of materials used to build vehicles. -Reducing the aerodynamic resistance of vehicles through better shape design.
Improving Operating Practices	-Reducing the average taxi time for aircraft. - Driving sensibly (avoiding rapid acceleration and braking, observing the speed limit). -Reducing engine-idling. - Improved voyage planning for ships, such as through improved weather routing, to increase fuel efficiency.
Reducing Travel Demand	-Building public transportation, sidewalks, and bike paths to increase lower-emission transportation choices. -Zoning for mixed use areas, so that residences, schools, stores, and businesses are close together, reducing the need for driving.

http://www.epa.gov/climatechange/ghgemissions/sources/transportation.html

Important principles

- In short distance travel
- Lighter vehicles, less stops, move slower
- In long distance travel
- Good aerodynamics, move slower
- Improve energy conversion efficiencies

NM transport statistics

AVERAGE DAILY PERSON MILES

Miles per person per day, 2009

New Mexico 37.6
United States 36.1

2001
15.5

MOTOR FUEL USE PER CAPITA
Gallons per capita, 2012

New Mexico

United States

707

548

TRANSPORTATION ENERGY USE PER CAPITA
Million Btu per capita, 2012

Source: http://www.rita.dot.gov/bts/sites/rita.dot.gov.bts/files/new_mexico.pdf

Efficient Transport

Bicycles

Walking

A $64 \mathrm{~kg}(140 \mathrm{lb})$ cyclist riding at $16 \mathrm{~km} / \mathrm{h}$ (10 mph) requires about half the energy per unit distance of walking: $43 \mathrm{kcal} / \mathrm{mi}$, $27 \mathrm{kcal} / \mathrm{km}$ or $0.03 \mathrm{kWh} / \mathrm{km}$

A $68 \mathrm{~kg}(150 \mathrm{lb})$ person walking at $4 \mathrm{~km} / \mathrm{h}$ (2.5 mph) requires approximately 210 kilocalories (880 kJ) of food energy per hour, which is equivalent to $0.06 \mathrm{kWh} / \mathrm{km}$
http://en.wikipedia.org/wiki/Energy_efficiency_in_transportation

Walkscore

Source: Sustainable Energy without the hot air, p 128

From IEA Report, 2010

- Eco-driving is the operation of a vehicle in a manner that minimises fuel consumption and emissions. It includes:
- Optimising gear changing.
- Avoiding vehicle idling, e.g. by turning the engine off when the vehicle is stationary.
- Avoiding rapid acceleration and deceleration.
- Driving at efficient speeds. The most efficient speed for most cars is between $60 \mathrm{~km} / \mathrm{h}$ and $90 \mathrm{~km} / \mathrm{h}$. Above $120 \mathrm{~km} / \mathrm{h}$, fuel efficiency falls significantly in most vehicles.
- Reducing weight by removing unnecessary items from the car, and reducing wind resistance by removing roof attachments such as ski racks.
- Used together, these steps could save up to 20% of the fuel used by some drivers and possibly 5\% to 10% on average across all drivers on a lasting basis.

Levers to encourage purchase of efficient cars

- Gasoline tax
- "market-based interventions, such as moderate carbon and gasoline taxes, are unlikely to produce substantial consumer substitution toward fuel efficient vehicles" (Langer \& Miller, 2012)
- Purchase tax in proportion to lifetime gasoline consumption of vehicle
- Parking privileges for efficient cars
- Fuel rationing
- CAFE standards

Corporate Ave Fuel Efficiency (CAFE)

Fuel-economy standards
60 miles per gallon

NEW GOAL
FOR U.S. CARS
AND LIGHT TRUCKS
54.5 by 2025

50
40 PREVIOUS GOAL

Source: National Highway Traffic Safety Administration

Electric vehicles

Comparing new Nissan Leaf (all electric) to new Honda Civic

- Assume you drive 11,400 miles/year, you drive each car for 12 years, you access a loan at 7\% interest, and the average price of gasoline over this time period is 3.50 \$/gallon (anyone's guess!!).
- A 2014 Honda Civic has an MSRP of \$19,000 and gets a combined (cty/hwy) mileage of 33 mpg .
- A 2014 Nissan Leaf has an MSRP of $\$ 29,000$, a range of 73 mi per charge, and an efficiency of $29 \mathrm{kWh} / 100 \mathrm{mi}$. Assume electricity costs $0.12 \$ / \mathrm{kWh}$.
- Find the annualized capital cost, fuel costs, total annual costs, and annual emissions (assume you are getting your electricity from PNM, 0.66 kg CO2/kWh).

Honda Civic vs Leaf

- Annualized capital cost: 2392 \$/yr
- Gas: 1198 \$/yr
- Total annual cost: $3591 \$ / \mathrm{yr}$
- Emissions: 3,043 kg CO2/yr
- Annualized capital cost: 3651 \$/yr
- Electricity: 393 \$/yr
- Total annual cost: $4044 \$ / \mathrm{yr}$
- Emissions:2,162 kg CO2/yr

