ENERGY ECONOMICS WORKSHEET

Equations for the time value of money:

- If we start with a monthly discount rate $\left(r_{M}\right)$ and we want to find out the corresponding annual discount rate $\left(r_{A}\right)$, or vice versa:
$\left(1+r_{A}\right)=\left(1+r_{M}\right)^{12} \quad$ or, $\quad\left(1+r_{A}\right)^{1 / 12}=\left(1+r_{M}\right)$
-

Name	Converts	Equation
Present value	F to P	$\frac{1}{(1+i)^{n}}$
Uniform series present value	U to P	$\frac{1-(1+i)^{-n}}{i}$
Single payment compound amount	P to F	$(1+i)^{n}$
Capital recovery	P to U	$\frac{i}{1-(1+i)^{-n}}$

1. If you want to make a quick, simple calculation of a new technology investment that will result in energy (and money) savings, you can calculate the simple payback:
Simple Pay back $(\mathrm{yr})=\frac{\text { Capital Cost }(\$)}{\text { Annual Energy Savings }\left(\frac{\mathrm{kWh}}{\mathrm{yr}}\right) \mathrm{x} \text { Energy Price }\left(\frac{\mathrm{s}}{\mathrm{kWh}}\right)}$
2. Calculating the annualized power plant costs: Total cost $(\$ / y r)=$ capital cost $(\$ / y r)+$ fixed $O \& M(\$ / y r)+$ variable O\&M (\$/yr)
a. Convert capital cost to annualized cost using $U_{\text {capital }}=P\left[\frac{r}{1-(1+r)^{-n}}\right]$, where P is present value, r is discount rate, and n is project lifetime.
b. Calculate fixed $O \& M$ based on planned plant capacity.
c. Calculate variable $O \& M$ based on expected energy production (Nameplate x Capacity factor x $8760 \mathrm{hrs} / \mathrm{yr}$).
3. If you want to find lifetime cost of energy, then you can use your annualized total cost divided by

$$
\text { expected annual energy production: } \quad \text { LCE }=\frac{\text { Discounted annual costs }}{\text { annual energy production }}=\frac{\$}{k W h}
$$

4. If you want to find the cost for reducing CO2, for switching from a dirtier to a cleaner technology, you can calculate it as:
5. Cost of conserved carbon $=\frac{\text { Annualized cost of old technology-annualized cost of new technology }}{\text { tons of CO2 reduced }}$

Example: building a wind farm

- PNM will retire 836 MW of generation in 2017 at San Juan Generation Station. If the generation station currently has a capacity factor of 0.6 , how much energy is produced by these units each year?
- How many tons of CO2 is released each year (assume coal has an emission of $0.32 \mathrm{kgCO} / \mathrm{kWh}$). Assume a power plant efficiency of 0.35 .
- If PNM found a wind site that would have wind turbines operating with a capacity factor of 0.32 , what installed capacity would be needed to replace the lost generation?
- An engineering company tells PNM that it can build the needed wind farm at a capital cost of $2.2 \$ / \mathrm{W}$, and O\&M costs of $39.55 \$ / \mathrm{kW}$-yr. Find the annualized project cost, if it is assumed that PNM can borrow money at 8% over the expected 20 year lifetime of the project.
- Find the lifetime cost of energy for the project.
- Calculate the cost for the emission reduction, in terms of $\$ / \mathrm{tCO} 2$
- Explain why PNM can't actually contemplate replacing the energy generated by the coal power completely with wind energy.

