ENERGY ECONOMICS WORKSHEET

Equations for the time value of money:

• If we start with a monthly discount rate (r_M) and we want to find out the corresponding annual discount rate (r_A) , or vice versa:

$$(1+ r_A) = (1+ r_M)^{12}$$
 or,

or,
$$(1+r_A)^{1/12} = (1+r_M)$$

•

Name	Converts	Equation
Present value	F to P	$\frac{1}{(1+i)^n}$
Uniform series present value	U to P	$\frac{1-(1+i)^{-n}}{i}$
Single payment compound amount	P to F	$(1+i)^n$
Capital recovery	P to U	$\frac{i}{1-(1+i)^{-n}}$

1. If you want to make a quick, simple calculation of a new technology investment that will result in energy (and money) savings, you can calculate the simple payback:

Simple Payback (yr) =
$$\frac{\text{Capital Cost (\$)}}{\text{Annual Energy Savings } (\frac{kWh}{yr}) \text{ x Energy Price } (\frac{\$}{kWh})}$$

2. Calculating the annualized power plant costs: Total cost (\$/yr) = capital cost (\$/yr) + fixed O&M (\$/yr) + variable O&M (\$/yr)

a. Convert capital cost to annualized cost using $U_{capital} = P \left[\frac{r}{1 - (1 + r)^{-n}} \right]$, where P is present value, r is discount rate, and n is project lifetime.

b. Calculate fixed O&M based on planned plant capacity.

c. Calculate variable O&M based on expected energy production (Nameplate x Capacity factor x 8760 hrs/yr).

3. If you want to find lifetime cost of energy, then you can use your annualized total cost divided by expected annual energy production: $LCE = \frac{Discounted \text{ annual costs}}{\text{annual energy production}} = \frac{\$}{kWh}$

4. If you want to find the cost for reducing CO2, for switching from a dirtier to a cleaner technology, you can calculate it as:

5. Cost of conserved carbon = $\frac{Annualized\ cost\ of\ old\ technology-annualized\ cost\ of\ new\ technology}{tons\ of\ CO2\ reduced}$

Example: building a wind farm

• PNM will retire 836 MW of generation in 2017 at San Juan Generation Station. If the generation station currently has a capacity factor of 0.6, how much energy is produced by these units each year?

•	How many tons of CO2 is released each year (assume coal has an emission of 0.32 kgCO2/kWh). Assume a power plant efficiency of 0.35.
•	If PNM found a wind site that would have wind turbines operating with a capacity factor of 0.32, what installed capacity would be needed to replace the lost generation?
•	An engineering company tells PNM that it can build the needed wind farm at a capital cost of 2.2 \$/W, and O&M costs of 39.55 \$/kW-yr. Find the annualized project cost, if it is assumed that PNM can borrow money at 8% over the expected 20 year lifetime of the project.
•	Find the lifetime cost of energy for the project. Calculate the cost for the emission reduction, in terms of \$/tCO2
•	Explain why PNM can't actually contemplate replacing the energy generated by the coal power completely with wind energy.